Análisis de correlación entre medidas volumétricas y funciones ejecutivas en esclerosis múltiple
DOI:
https://doi.org/10.14198/DCN.2020.7.1.04Palabras clave:
Volumen Cerebral Global, Tálamo, Funciones Ejecutivas, Esclerosis Múltiple, CogniciónResumen
La esclerosis múltiple (EM) es una enfermedad crónica y neurodegenerativa del Sistema Nervioso Central con clara prevalencia de alteraciones cognitivas, especialmente atención, memoria y funciones ejecutivas. Los estudios de volumetría han mostrado la estrecha relación entre el volumen cerebral y el rendimiento cognitivo, sin embargo, son pocos los trabajos que han analizado las funciones ejecutivas en profundidad. Por ello, el objetivo del presente trabajo fue esclarecer la relación entre estas variables, a través de medidas de volumen global y regional (volumen bitalámico), con un amplio protocolo de funciones ejecutivas. Para ello 40 personas con EM participaron en este estudio transversal. Los resultados obtenidos mediante correlaciones bivariadas muestran relación moderada y positiva entre el volumen global y el rendimiento cognitivo en la memoria de trabajo. Igualmente se halla relación fuerte y moderada entre el volumen bitálamico y la ejecución en dominios cognitivos como la velocidad de procesamiento, la memoria de trabajo y la fluidez verbal semántica. Los resultados obtenidos muestran mayor sensibilidad de la memoria de trabajo en este tipo de estudios, y abren la posibilidad a la implantación de nuevos instrumentos de valoración cognitiva en la práctica clínica.Citas
Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 2014; 83: 1022-4. doi: https://doi.org/10.1212/WNL.0000000000000768
Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Rev. Neurol 2016; 172(1): 3-13. doi: https://doi.org/10.1016/j.neurol.2015.10.006
Chiaravalloti D, DeLuca D. Cognitive impairment in multiple sclerosis. Lancet Neurol 2008; 7(12): 1139-1151. doi: https://doi.org/10.1016/S1474-4422(08)70259-X
Kinsinger SW, Lattie E, Mohr DC. Relationship between depression, fatigue, subjective cognitive impairment, and objective neuropsychological functioning in patients with multiple sclerosis. Neuropsychology 2010; 24(5): 573-580. doi: https://doi.org/10.1037/a0019222
Matotek K, Saling MM, Gates P, Sedal L. Subjective complaints, verbal fluency, and working memory in mild multiple sclerosis. Appl Neuropsych Adul 2001; 8(4): 204-210. doi: https://doi.org/10.1207/S15324826AN0804_2
Schiavolin S, Leonardi M, Giovannetti AM, Antozzi C, Brambilla L, Confalonieri P, et al. Factors related to difficulties with employment in patients with multiple sclerosis: a review of 2002-2011 literature. Int J Rehabil Res 2013; 36(2):105-111. doi: https://doi.org/10.1097/MRR.0b013e32835c79ea
Debernard L, Melzer TR, Alla S, Eagle J, Van Stockum S, Graham C, et al. Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis. Psychiatry Res. Neuroimaging 2015; 234(3): 352-361. doi: https://doi.org/10.1016/j.pscychresns.2015.10.004
Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008; 64(3): 255-265. doi: https://doi.org/10.1002/ana.21436
Eshaghi A, Marinescu RV, Young AL, Firth NC, Prados F, Jorge Cardoso M, et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018;141(6): 1665-1677. doi: https://doi.org/10.1093/brain/awy088
Jakimovski D, Bergsland N, Dwyer MG, Hagemeier J, Ramasamy DP, Szigeti K, et al. Long-standing multiple sclerosis neurodegeneration: volumetric magnetic resonance imaging comparison to Parkinson's disease, mild cognitive impairment, Alzheimer's disease, and elderly healthy controls. Neurobiol. Aging. 2020. doi: https://doi.org/10.1016/j.neurobiolaging.2020.02.002
Tremblay A, Jobin C, Demers M, Dagenais E, Narayanan S, Araújo D. Thalamic and hippocampal volume associated with memory functions in multiple sclerosis. Brain and cognition 2018; 125: 61-68. doi: https://doi.org/10.1016/j.bandc.2018.05.013
Matías-Guiu JA, Cortés-Martínez A, Montero P, Pytel V, Moreno-Ramos T, Jorquera, M. Identification of cortical and subcortical correlates of cognitive performance in multiple sclerosis using voxel-based morphometry. Frontiers in neurology 2018: 9: 920. doi: https://doi.org/10.3389/fneur.2018.00920
Bisecco A, Stamenova S, Caiazzo G, d'Ambrosio A, Sacco R, Docimo R. Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav 2018;12(1):20-28. doi: https://doi.org/10.1007/s11682-016-9667-6
Modica C, Zivadinov R, Dwyer M, Bergsland N, Weeks A, Benedict R. Iron In The Deep Gray Matter: Association With Cognitive Impairment In Multiple Sclerosis. 2014; 125:6.
Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman, B. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler J 2013; 19(11):1478-1484. doi: https://doi.org/10.1177/1352458513478675
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol 2011; 69(2):292-302. doi: https://doi.org/10.1002/ana.22366
Smith A. The Symbol Digits Modalities Test Manual, revised Western Psychological Services: Los Angeles; 1982.
Gronwall DMA. Paced auditory serial-addition task: a measure of recovery from concussion. Perceptual and motor skills 1977;44(2): 367-373. doi: https://doi.org/10.2466/pms.1977.44.2.367
Rao SM, Cognitive Function Study Group, NMSS. A Manual for the Brief Repeatable Battery of Neuropsychology Tests in Multiple Sclerosis National Multiple Sclerosis Society: New York; 1990.
Reynolds CR. Comprehensive trail making test (CTMT). Austin, TX: Pro-Ed; 2002.
Sedo, M., Levenson, R.Culture free 5-min testing of higher mental ' processes. In: Annual Meeting of the International Association for Cross-Cultural Psychology, Pamplona; 1994.
Weschler, D. Weschler adult intelligence scale. San Antonio, TX: The Psychological Corporation; 1997.
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33(11): 1444-1444. doi: https://doi.org/10.1212/WNL.33.11.1444
Solà-Valls N, Vicente-Pascual M, Blanco Y, Solana E, Llufriu S, Martínez-Heras E, et al. Spanish validation of the telephone assessed Expanded Disability Status Scale and Patient Determined Disease Steps in people with multiple sclerosis. Mult Scler Relat Dis 2010; 27: 333-339. doi: https://doi.org/10.1016/j.msard.2018.11.018
Louis S, Morita-Sherman M, Jones S, Vegh D, Bingaman W, Blumcke I, et al. Hippocampal Sclerosis Detection with NeuroQuant Compared with Neuroradiologists. AJNR Am. J. Neuroradiol 2020: 41: 591-597. doi: https://doi.org/10.3174/ajnr.A6454
Kalinowska-Łyszczarz, A, Pawlak MA, Pietrzak A, Pawlak-Buś K, Leszczyński P, Puszczewicz M, et al. Subcortical gray matter atrophy is associated with cognitive deficit in multiple sclerosis but not in systemic lupus erythematosus patients. Lupus 2018; 27(4): 610-620. doi: https://doi.org/10.1177/0961203317735186
Lazeron RH, Boringa JB, Schouten M, Uitdehaag BM, Bergers E, Lindeboom J, et al. Brain atrophy and lesion load as explaining parameters for cognitive impairment in multiple sclerosis. Mult Scler J 2005;11(5):524-531. doi: https://doi.org/10.1191/1352458505ms1201oa
López-Góngora M, Querol L, Escartín A. A one-year follow-up study of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting multiple sclerosis: an appraisal of comparative longitudinal sensitivity. BMC neurology 2015; 15(1):1-8. doi: https://doi.org/10.1186/s12883-015-0296-2
Pachner AR, Steiner I. The multiple sclerosis severity score (MSSS) predicts disease severity over time. J Neurol Sci 2009; 278 (1-2): 66-70. doi: https://doi.org/10.1016/j.jns.2008.11.020
Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA, et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 2013;80(2): 210-219. doi: https://doi.org/10.1212/WNL.0b013e31827b910b
Strober L, DeLuca J, Benedict RH, Jacobs A, Cohen JA, Chiaravalloti, N. et al. Symbol digit modalities test: a valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult Scler J 2019; 25(13):1781-1790. doi: https://doi.org/10.1177/1352458518808204
Rao SM, Martin AL, Huelin R, Wissinger E, Khankhel Z, Kim E. Fahrbach K. Correlations between MRI and information processing speed in MS: a meta-analysis. Mult. Scler. Int 2014; ID 975803. doi: https://doi.org/10.1155/2014/975803
Sastre-Garriga J, Arévalo MJ, Renom M, Alonso J, González I, Galán I. Brain volumetry counterparts of cognitive impairment in patients with multiple sclerosis. J Neurol Sci 2009; 282(1-2):120-124. doi: https://doi.org/10.1016/j.jns.2008.12.019
Nocentini U, Bozzali M, Spanò B, Cercignani M, Serra L, Basile B. Exploration of the relationships between regional grey matter atrophy and cognition in multiple sclerosis. Brain imaging and behave 2014;8(3):378-386. doi: https://doi.org/10.1007/s11682-012-9170-7
Tombaugh, TN. A comprehensive review of the paced auditory serial addition test (PASAT). Arch Clin Neuropsych 2006; 21(1):53-76. doi: https://doi.org/10.1016/j.acn.2005.07.006
Papathanasiou A, Messinis L, Zampakis P, Panagiotakis G, Gourzis P, Georgiou V, et al. Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. J Neurol SCI 2015; 358(1-2):236-242. doi: https://doi.org/10.1016/j.jns.2015.09.001
Damasceno A, Damasceno BP, Cendes F. No evidence of disease activity in multiple sclerosis: implications on cognition and brain atrophy. Mult Scler J 2016; 22(1): 64-72. doi: https://doi.org/10.1177/1352458515604383
Amato MP, Portaccio E, Goretti B, Zipoli V, Hakiki B, Giannini M. Cognitive impairment in early stages of multiple sclerosis. Neurol. Sci 2010; 31(2):211-214. doi: https://doi.org/10.1007/s10072-010-0376-4
Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology. 2013; 80(2):210-219. doi: https://doi.org/10.1212/WNL.0b013e31827b910b
Houtchens MK, Benedict RHB, Killiany R, Sharma J, Jaisani Z, Singh, B. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2017;69(12):1213-1223. doi: https://doi.org/10.1212/01.wnl.0000276992.17011.b5
Santangelo G, Altieri M, Enzinger C, Gallo A, Trojano L. Cognitive reserve and neuropsychological performance in multiple sclerosis: A meta-analysis. Neuropsychology 2019; 33(3):379. doi: https://doi.org/10.1037/neu0000520
Deloire M, Ruet A, Hamel D, Bonnet M, Brochet B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult Scler 2010;16(5):581-7. doi: https://doi.org/10.1177/1352458510362819
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Laura De Torres, Ignacio Casanova, Carlos López de Silanes
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.