Análisis de correlación entre medidas volumétricas y funciones ejecutivas en esclerosis múltiple

Autores/as

DOI:

https://doi.org/10.14198/DCN.2020.7.1.04

Palabras clave:

Volumen Cerebral Global, Tálamo, Funciones Ejecutivas, Esclerosis Múltiple, Cognición

Resumen

La esclerosis múltiple (EM) es una enfermedad crónica y neurodegenerativa del Sistema Nervioso Central con clara prevalencia de alteraciones cognitivas, especialmente atención, memoria y funciones ejecutivas. Los estudios de volumetría han mostrado la estrecha relación entre el volumen cerebral y el rendimiento cognitivo, sin embargo, son pocos los trabajos que han analizado las funciones ejecutivas en profundidad. Por ello, el objetivo del presente trabajo fue esclarecer la relación entre estas variables, a través de medidas de volumen global y regional (volumen bitalámico), con un amplio protocolo de funciones ejecutivas. Para ello 40 personas con EM participaron en este estudio transversal. Los resultados obtenidos mediante correlaciones bivariadas muestran relación moderada y positiva entre el volumen global y el rendimiento cognitivo en la memoria de trabajo. Igualmente se halla relación fuerte y moderada entre el volumen bitálamico y la ejecución en dominios cognitivos como la velocidad de procesamiento, la memoria de trabajo y la fluidez verbal semántica. Los resultados obtenidos muestran mayor sensibilidad de la memoria de trabajo en este tipo de estudios, y abren la posibilidad a la implantación de nuevos instrumentos de valoración cognitiva en la práctica clínica.

Citas

Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 2014; 83: 1022-4. doi: https://doi.org/10.1212/WNL.0000000000000768

Leray E, Moreau T, Fromont A, Edan G. Epidemiology of multiple sclerosis. Rev. Neurol 2016; 172(1): 3-13. doi: https://doi.org/10.1016/j.neurol.2015.10.006

Chiaravalloti D, DeLuca D. Cognitive impairment in multiple sclerosis. Lancet Neurol 2008; 7(12): 1139-1151. doi: https://doi.org/10.1016/S1474-4422(08)70259-X

Kinsinger SW, Lattie E, Mohr DC. Relationship between depression, fatigue, subjective cognitive impairment, and objective neuropsychological functioning in patients with multiple sclerosis. Neuropsychology 2010; 24(5): 573-580. doi: https://doi.org/10.1037/a0019222

Matotek K, Saling MM, Gates P, Sedal L. Subjective complaints, verbal fluency, and working memory in mild multiple sclerosis. Appl Neuropsych Adul 2001; 8(4): 204-210. doi: https://doi.org/10.1207/S15324826AN0804_2

Schiavolin S, Leonardi M, Giovannetti AM, Antozzi C, Brambilla L, Confalonieri P, et al. Factors related to difficulties with employment in patients with multiple sclerosis: a review of 2002-2011 literature. Int J Rehabil Res 2013; 36(2):105-111. doi: https://doi.org/10.1097/MRR.0b013e32835c79ea

Debernard L, Melzer TR, Alla S, Eagle J, Van Stockum S, Graham C, et al. Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis. Psychiatry Res. Neuroimaging 2015; 234(3): 352-361. doi: https://doi.org/10.1016/j.pscychresns.2015.10.004

Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008; 64(3): 255-265. doi: https://doi.org/10.1002/ana.21436

Eshaghi A, Marinescu RV, Young AL, Firth NC, Prados F, Jorge Cardoso M, et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain 2018;141(6): 1665-1677. doi: https://doi.org/10.1093/brain/awy088

Jakimovski D, Bergsland N, Dwyer MG, Hagemeier J, Ramasamy DP, Szigeti K, et al. Long-standing multiple sclerosis neurodegeneration: volumetric magnetic resonance imaging comparison to Parkinson's disease, mild cognitive impairment, Alzheimer's disease, and elderly healthy controls. Neurobiol. Aging. 2020. doi: https://doi.org/10.1016/j.neurobiolaging.2020.02.002

Tremblay A, Jobin C, Demers M, Dagenais E, Narayanan S, Araújo D. Thalamic and hippocampal volume associated with memory functions in multiple sclerosis. Brain and cognition 2018; 125: 61-68. doi: https://doi.org/10.1016/j.bandc.2018.05.013

Matías-Guiu JA, Cortés-Martínez A, Montero P, Pytel V, Moreno-Ramos T, Jorquera, M. Identification of cortical and subcortical correlates of cognitive performance in multiple sclerosis using voxel-based morphometry. Frontiers in neurology 2018: 9: 920. doi: https://doi.org/10.3389/fneur.2018.00920

Bisecco A, Stamenova S, Caiazzo G, d'Ambrosio A, Sacco R, Docimo R. Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav 2018;12(1):20-28. doi: https://doi.org/10.1007/s11682-016-9667-6

Modica C, Zivadinov R, Dwyer M, Bergsland N, Weeks A, Benedict R. Iron In The Deep Gray Matter: Association With Cognitive Impairment In Multiple Sclerosis. 2014; 125:6.

Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman, B. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler J 2013; 19(11):1478-1484. doi: https://doi.org/10.1177/1352458513478675

Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol 2011; 69(2):292-302. doi: https://doi.org/10.1002/ana.22366

Smith A. The Symbol Digits Modalities Test Manual, revised Western Psychological Services: Los Angeles; 1982.

Gronwall DMA. Paced auditory serial-addition task: a measure of recovery from concussion. Perceptual and motor skills 1977;44(2): 367-373. doi: https://doi.org/10.2466/pms.1977.44.2.367

Rao SM, Cognitive Function Study Group, NMSS. A Manual for the Brief Repeatable Battery of Neuropsychology Tests in Multiple Sclerosis National Multiple Sclerosis Society: New York; 1990.

Reynolds CR. Comprehensive trail making test (CTMT). Austin, TX: Pro-Ed; 2002.

Sedo, M., Levenson, R.Culture free 5-min testing of higher mental ' processes. In: Annual Meeting of the International Association for Cross-Cultural Psychology, Pamplona; 1994.

Weschler, D. Weschler adult intelligence scale. San Antonio, TX: The Psychological Corporation; 1997.

Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33(11): 1444-1444. doi: https://doi.org/10.1212/WNL.33.11.1444

Solà-Valls N, Vicente-Pascual M, Blanco Y, Solana E, Llufriu S, Martínez-Heras E, et al. Spanish validation of the telephone assessed Expanded Disability Status Scale and Patient Determined Disease Steps in people with multiple sclerosis. Mult Scler Relat Dis 2010; 27: 333-339. doi: https://doi.org/10.1016/j.msard.2018.11.018

Louis S, Morita-Sherman M, Jones S, Vegh D, Bingaman W, Blumcke I, et al. Hippocampal Sclerosis Detection with NeuroQuant Compared with Neuroradiologists. AJNR Am. J. Neuroradiol 2020: 41: 591-597. doi: https://doi.org/10.3174/ajnr.A6454

Kalinowska-Łyszczarz, A, Pawlak MA, Pietrzak A, Pawlak-Buś K, Leszczyński P, Puszczewicz M, et al. Subcortical gray matter atrophy is associated with cognitive deficit in multiple sclerosis but not in systemic lupus erythematosus patients. Lupus 2018; 27(4): 610-620. doi: https://doi.org/10.1177/0961203317735186

Lazeron RH, Boringa JB, Schouten M, Uitdehaag BM, Bergers E, Lindeboom J, et al. Brain atrophy and lesion load as explaining parameters for cognitive impairment in multiple sclerosis. Mult Scler J 2005;11(5):524-531. doi: https://doi.org/10.1191/1352458505ms1201oa

López-Góngora M, Querol L, Escartín A. A one-year follow-up study of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting multiple sclerosis: an appraisal of comparative longitudinal sensitivity. BMC neurology 2015; 15(1):1-8. doi: https://doi.org/10.1186/s12883-015-0296-2

Pachner AR, Steiner I. The multiple sclerosis severity score (MSSS) predicts disease severity over time. J Neurol Sci 2009; 278 (1-2): 66-70. doi: https://doi.org/10.1016/j.jns.2008.11.020

Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA, et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 2013;80(2): 210-219. doi: https://doi.org/10.1212/WNL.0b013e31827b910b

Strober L, DeLuca J, Benedict RH, Jacobs A, Cohen JA, Chiaravalloti, N. et al. Symbol digit modalities test: a valid clinical trial endpoint for measuring cognition in multiple sclerosis. Mult Scler J 2019; 25(13):1781-1790. doi: https://doi.org/10.1177/1352458518808204

Rao SM, Martin AL, Huelin R, Wissinger E, Khankhel Z, Kim E. Fahrbach K. Correlations between MRI and information processing speed in MS: a meta-analysis. Mult. Scler. Int 2014; ID 975803. doi: https://doi.org/10.1155/2014/975803

Sastre-Garriga J, Arévalo MJ, Renom M, Alonso J, González I, Galán I. Brain volumetry counterparts of cognitive impairment in patients with multiple sclerosis. J Neurol Sci 2009; 282(1-2):120-124. doi: https://doi.org/10.1016/j.jns.2008.12.019

Nocentini U, Bozzali M, Spanò B, Cercignani M, Serra L, Basile B. Exploration of the relationships between regional grey matter atrophy and cognition in multiple sclerosis. Brain imaging and behave 2014;8(3):378-386. doi: https://doi.org/10.1007/s11682-012-9170-7

Tombaugh, TN. A comprehensive review of the paced auditory serial addition test (PASAT). Arch Clin Neuropsych 2006; 21(1):53-76. doi: https://doi.org/10.1016/j.acn.2005.07.006

Papathanasiou A, Messinis L, Zampakis P, Panagiotakis G, Gourzis P, Georgiou V, et al. Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. J Neurol SCI 2015; 358(1-2):236-242. doi: https://doi.org/10.1016/j.jns.2015.09.001

Damasceno A, Damasceno BP, Cendes F. No evidence of disease activity in multiple sclerosis: implications on cognition and brain atrophy. Mult Scler J 2016; 22(1): 64-72. doi: https://doi.org/10.1177/1352458515604383

Amato MP, Portaccio E, Goretti B, Zipoli V, Hakiki B, Giannini M. Cognitive impairment in early stages of multiple sclerosis. Neurol. Sci 2010; 31(2):211-214. doi: https://doi.org/10.1007/s10072-010-0376-4

Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology. 2013; 80(2):210-219. doi: https://doi.org/10.1212/WNL.0b013e31827b910b

Houtchens MK, Benedict RHB, Killiany R, Sharma J, Jaisani Z, Singh, B. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2017;69(12):1213-1223. doi: https://doi.org/10.1212/01.wnl.0000276992.17011.b5

Santangelo G, Altieri M, Enzinger C, Gallo A, Trojano L. Cognitive reserve and neuropsychological performance in multiple sclerosis: A meta-analysis. Neuropsychology 2019; 33(3):379. doi: https://doi.org/10.1037/neu0000520

Deloire M, Ruet A, Hamel D, Bonnet M, Brochet B. Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult Scler 2010;16(5):581-7. doi: https://doi.org/10.1177/1352458510362819

Descargas

Estadísticas

Estadísticas en RUA

Publicado

15-07-2020

Cómo citar

De Torres, L., Casanova, I., & López de Silanes, C. (2020). Análisis de correlación entre medidas volumétricas y funciones ejecutivas en esclerosis múltiple. Revista De Discapacidad, Clínica Y Neurociencias, 7(1), 27–39. https://doi.org/10.14198/DCN.2020.7.1.04

Número

Sección

Artículos