Beneficios de los compuestos bioactivos del mangostán en la enfermedad de Alzheimer: Revisión narrativa
DOI:
https://doi.org/10.14198/DCN.19622Palabras clave:
Compuestos bioactivos, Compuestos neuroprotectores, Enfermedad de Alzheimer, Mangostán, MangostínResumen
La enfermedad de Alzheimer (EA) es una enfermedad neurodegenerativa irreversible, acompañada de pérdida de memoria y de déficit neurocognitivo progresivo. Los cambios fisiopatológicos asociados a esta enfermedad son la formación extracelular de depósitos de placas del péptido insoluble ß-amiloide, la hiperfosforilación de la proteína tau formando ovillos neurofibrilares, además de neuroinflamación, estrés oxidativo, alteración del metabolismo energético, pérdida de neuronas y sinapsis en el cerebro. La patogénesis de la EA no es conocida en su totalidad porque es multifactorial. Por lo tanto, no existe un tratamiento preventivo exitoso. En este sentido, existe un reciente interés sobre los compuestos bioactivos presentes en productos naturales y hierbas medicinales para el tratamiento de la EA por sus efectos beneficiosos. El mangostán, Garcinia mangostana L (familia de Guttifereae), es un árbol tropical que produce una fruta comestible con un sabor dulce y picante; cuyo pericarpio es una fuente de compuestos bioactivos, que han mostrado una excelente actividad farmacológica. El pericarpio del mangostán se ha utilizado en la medicina tradicional contra varias enfermedades como úlceras, infecciones de la piel, diarrea o heridas. Muchos estudios han reportado que el pericarpio del mangostán contiene compuestos fenólicos, vitaminas (B1, B2, C) y otras sustancias bioactivas. Las xantonas y sus derivados pertenecen a la familia de los polifenoles, y están muy presentes en el mangostán. Se ha demostrado que poseen una amplia actividad biológica como antioxidantes, antiinflamatorios, anticancerígenos, antimicrobianos y actividades neuroprotectoras tanto en estudios in vitro como in vivo. La evidencia científica sugiere que las xantonas (obtenidas de pericarpio del mangostán) pueden atenuar la neurotoxicidad y algunos de los cambios fisiopatológicos asociados con la EA en modelos celulares y animales. En la presente revisión, se describe el estado actual del potencial efecto terapéutico del extracto del mangostán y las xantonas en modelos celulares y animales en la EA, describiendo también los efectos observados y las vías moleculares propuestas.Citas
Navarro-González I, Codina-Diaz E, Periago MJ. Propiedades beneficiosas para la salud del mangostán. Revista Española de Nutrición comunitaria 2015.
Wang MH, Zhang KJ, Gu QL, Bi XL, Wang JX. Pharmacology of mangostins and their derivatives: A comprehensive review. Chin J Nat Med 2017, 15 (2): 81-93. doi: https://doi.org/10.1016/s1875-5364(17)30024-9
Wang SN, Li Q, Jing MH, Alba E, Yang XH, Sabaté R, et al. Natural Xanthones from Garcinia mangostana with Multifunctional Activities for the Therapy of Alzheimer's Disease. Neurochem Res 2016, 41 (7): 1806-1817. doi: https://doi.org/10.1007/s11064-016-1896-y
Oh Y, Do HTT, Kim S, Kim Y-M, Chin Y-W, Cho J. Memory-Enhancing Effects of Mangosteen Pericarp Water Extract through Antioxidative Neuroprotection and Anti-Apoptotic Action. Antioxidants 2021, 10 (1): 34. doi: https://doi.org/10.3390/antiox10010034
Moongkarndi P, Srisawat C, Saetun P, Jantaravinid J, Peerapittayamongkol C, Soi-ampornkul R, et al. Protective effect of mangosteen extract against beta-amyloid-induced cytotoxicity, oxidative stress and altered proteome in SK-N-SH cells. J Proteome Res 2010, 9 (5): 2076-2086. doi: https://doi.org/10.1021/pr100049v
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. International journal of molecular sciences 2020, 21 (17). doi: https://doi.org/10.3390/ijms21176211
Bondi MW, Edmonds EC, Salmon DP. Alzheimer's Disease: Past, Present, and Future. J Int Neuropsychol Soc 2017, 23 (9-10): 818-831. doi: https://doi.org/10.1017/s135561771700100x
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 2019, 14: 5541-5554. doi: https://doi.org/10.2147/ijn.S200490
Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F. New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. Br J Clin Pharmacol 2012, 73 (4): 504-517. doi: https://doi.org/10.1111/j.1365-2125.2011.04134.x
Menendez-Gonzalez M, Padilla-Zambrano HS, Alvarez G, Capetillo-Zarate E, Tomas-Zapico C, Costa A. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease. Front Aging Neurosci 2018, 10: 100-100. doi: https://doi.org/10.3389/fnagi.2018.00100
Hardy J. The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J Neurochem 2009, 110 (4): 1129-1134. doi: https://doi.org/10.1111/j.1471-4159.2009.06181.x
Chakravarthy M, Chen S, Dodd PR, Veedu RN. Nucleic Acid-Based Theranostics for Tackling Alzheimer's Disease. Theranostics 2017, 7 (16): 3933-3947. doi: https://doi.org/10.7150/thno.21529
Pooler AM, Polydoro M, Wegmann S, Nicholls SB, Spires-Jones TL, Hyman BT. Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets. Alzheimer's research & therapy 2013, 5 (5): 49. doi: https://doi.org/10.1186/alzrt214
Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomed Pharmacother 2018, 98: 297-307. doi: https://doi.org/10.1016/j.biopha.2017.12.053
Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992, 12 (2): 376-389. doi: https://doi.org/10.1523/jneurosci.12-02-00376.1992
Couratier P, Lesort M, Sindou P, Esclaire F, Yardin C, Hugon J. Modifications of neuronal phosphorylated τ immunoreactivity induced by NMDA toxicity. Mol Chem Neuropathol 1996, 27 (3): 259-273. doi: https://doi.org/10.1007/BF02815108
Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992, 256 (5054): 184-185. doi: https://doi.org/10.1126/science.1566067
Giacobini E. Cholinergic function and Alzheimer's disease. Int J Geriatr Psychiatry 2003, 18 (Suppl 1): S1-5. doi: https://doi.org/10.1002/gps.935
Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discovery medicine 2018, 26 (143): 127-136.
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Prog Neurobiol 2016, 147: 1-19. doi: https://doi.org/10.1016/j.pneurobio.2016.07.005
Umeno A, Biju V, Yoshida Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Free Radic Res 2017, 51 (4): 413-427. doi: https://doi.org/10.1080/10715762.2017.1315114
Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 2014, 1842 (8): 1240-1247. doi: https://doi.org/10.1016/j.bbadis.2013.10.015
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013, 138 (2): 155-175. doi: https://doi.org/10.1016/j.pharmthera.2013.01.004
Tanila H. The role of BDNF in Alzheimer's disease. Neurobiol Dis 2017, 97: 114-118. doi: https://doi.org/10.1016/j.nbd.2016.05.008
Weecharangsan W, Opanasopit P, Sukma M, Ngawhirunpat T, Sotanaphun U, Siripong P. Antioxidative and neuroprotective activities of extracts from the fruit hull of mangosteen (Garcinia mangostana Linn.). Med Princ Pract 2006, 15 (4): 281-287. doi: https://doi.org/10.1159/000092991
Sattayasai J, Chaonapan P, Arkaravichie T, Soi-ampornkul R, Junnu S, Charoensilp P, et al. Protective Effects of Mangosteen Extract on H2O2-Induced Cytotoxicity in SK-N-SH Cells and Scopolamine-Induced Memory Impairment in Mice. PLOS ONE 2013, 8 (12): e85053. doi: https://doi.org/10.1371/journal.pone.0085053
Phyu MP, Tangpong J. Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment. Food Chem Toxicol 2014, 70: 151-156. doi: https://doi.org/10.1016/j.fct.2014.04.035
Wang Y, Xia Z, Xu J-R, Wang Y-X, Hou L-N, Qiu Y, et al. α-Mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology 2012, 62 (2): 871-881. doi: https://doi.org/10.1016/j.neuropharm.2011.09.016
Huang H-J, Chen W-L, Hsieh R-H, Hsieh-Li HM. Multifunctional Effects of Mangosteen Pericarp on Cognition in C57BL/6J and Triple Transgenic Alzheimer’s Mice. Evid-Based Compl Alt 2014, 2014: 813672. doi: https://doi.org/10.1155/2014/813672
P A, Reddy R, Begum N, Bakshi V. Neuroprotective Effect of Garcinia Mangostana on Streptozotocin Induced Sporadic Type Alzheimer's Disease in Mice. Int J Appl Pharm Sci Res 2016, 1. doi: https://doi.org/10.21477/ijapsr.v1i1.9603
Nava Catorce M, Acero G, Pedraza-Chaverri J, Fragoso G, Govezensky T, Gevorkian G. Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. J Neuroimmunol 2016, 297: 20-27. doi: https://doi.org/10.1016/j.jneuroim.2016.05.008
Zhao LX, Wang Y, Liu T, Wang YX, Chen HZ, Xu JR, et al. α-Mangostin decreases β-amyloid peptides production via modulation of amyloidogenic pathway. CNS Neurosci Ther 2017, 23 (6): 526-534. doi: https://doi.org/10.1111/cns.12699
Lee Y, Kim S, Oh Y, Kim Y-M, Chin Y-W, Cho J. Inhibition of Oxidative Neurotoxicity and Scopolamine-Induced Memory Impairment by "γ"-Mangostin: "In Vitro" and "In Vivo" Evidence. Oxid Med Cell Longev 2019, 2019: 3640753. doi: https://doi.org/10.1155/2019/3640753
Tiang N, Ahad M, Murugaiyah V, Hassan Z. Xanthone‐enriched fraction of Garcinia mangostana and α‐mangostin improve the spatial learning and memory of chronic cerebral hypoperfusion rats. J Pharm Pharmacol 2020, 72. doi: https://doi.org/10.1111/jphp.13345
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Inmaculada Navarro-González, Pedro Andreo-Martínez, Nuria García-Martínez, Salvadora Martínez-López, Elvira Pilar Sánchez-Samper
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.