Relación entre la exposición a pesticidas y las enfermedades mentales: Una revisión sistemática
DOI:
https://doi.org/10.14198/DCN.19700Palabras clave:
Enfermedades mentales, Enzima acetilcolinesterasa, Hormonas tiroideas, Pesticida, Trastornos neuropsiquiátricosResumen
Este trabajo realiza una revisión sistemática sobre la relación existente entre la exposición a residuos de pesticidas y la presencia de enfermedades o trastornos mentales. Los pesticidas son sustancias químicas utilizadas en la inmensa mayoría de los campos agrícolas para prevenir o eliminar las plagas que amenazan a los cultivos. Sin embargo, su uso puede implicar serios problemas para la salud de las personas como enfermedades pulmonares, cáncer, enfermedades metabólicas, problemas de infertilidad e incluso trastornos psicopatológicos. La metodología para realizar este estudio de revisión siguió las indicaciones marcadas por el protocolo PRISMA, encontrándose un total de cuatro artículos originales tras aplicar los criterios de exclusión e inclusión establecidos. Tres artículos estudiaron la relación exposición a residuos pesticidas - enfermedades mentales en sujetos con características diferentes y con niveles de exposición variables. Única-mente un artículo empleó ratones sometidos a diferentes dosis de pesticidas como modelo para evaluar su efecto sobre el comportamiento de estos animales. De los resultados encontrados por los diferentes artículos se puede deducir que la exposición a residuos de pesticidas tiene claros efectos sobre la salud mental de individuos altamente susceptibles a la presencia de contaminantes como mujeres lactantes y recién nacidos; así como personas sometidas a elevados niveles de pesticidas como formuladores y aplicadores agrícolas o personas residentes en las cercanías de campos agrícolas. Por otro lado, futuras investigaciones sobre este tema, basadas en modelos animales y estudios poblacionales, son necesarias para establecer conexiones realistas entre los trastornos mentales y los diferentes tipos de pesticidas usados actualmente en los campos agrícolas.Citas
Requena M, Parrón T, Navarro A, García J, Ventura MI, Hernández AF, et al. Association between environmental exposure to pesticides and epilepsy. Neurotoxicology 2018, 68: 13-18. doi: https://doi.org/10.1016/j.neuro.2018.07.002
Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health-Cancer and other associated disorders. Environ Toxicol Pharmacol 2018, 63: 103-114. doi: https://doi.org/10.1016/j.etap.2018.08.018
Larsen AE, Patton M, Martin EA. High highs and low lows: Elucidating striking seasonal variability in pesticide use and its environmental implications. Sci Total Environ 2019, 651 (Pt 1): 828-837. doi: https://doi.org/10.1016/j.scitotenv.2018.09.206
Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol 2017, 91 (2): 549-599. doi: https://doi.org/10.1007/s00204-016-1849-x
Roncati L, Pusiol T, Piscioli F, Lavezzi AM. Neurodevelopmental disorders and pesticide exposure: the northeastern Italian experience. Arch Toxicol 2017, 91 (2): 603-604. doi: https://doi.org/10.1007/s00204-016-1920-7
Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol 2010, 48 (5): 1311-1315. doi: https://doi.org/10.1016/j.fct.2010.02.029
Rauh VA. Polluting Developing Brains - EPA Failure on Chlorpyrifos. N Engl J Med 2018, 378 (13): 1171-1174. doi: https://doi.org/10.1056/NEJMp1716809
Liu J, Brannen KC, Grayson DR, Morrow AL, Devaud LL, Lauder JM. Prenatal exposure to the pesticide dieldrin or the GABA(A) receptor antagonist bicuculline differentially alters expression of GABA(A) receptor subunit mRNAs in fetal rat brainstem. Dev Neurosci 1998, 20 (1): 83-92. doi: https://doi.org/10.1159/000017302
Slotkin TA, Seidler FJ. Oxidative and excitatory mechanisms of developmental neurotoxicity: transcriptional profiles for chlorpyrifos, diazinon, dieldrin, and divalent nickel in PC12 cells. Environ Health Perspect 2009, 117 (4): 587-596. doi: https://doi.org/10.1289/ehp.0800251
Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, et al. An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production 2021, 283. doi: https://doi.org/10.1016/j.jclepro.2020.124657
Tarmure S, Alexescu TG, Orasan O, Negrean V, Sitar-Taut AV, Coste SC, et al. Influence of pesticides on respiratory pathology – A literature review. Annals of Agricultural and Environmental Medicine 2020, 27 (2): 194-200. doi: https://doi.org/10.26444/aaem/121899
Kim KH, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Science of the Total Environment 2017, 575: 525-535. doi: https://doi.org/10.1016/j.scitotenv.2016.09.009
Genuis SJ, Kelln KL. Toxicant exposure and bioaccumulation: a common and potentially reversible cause of cognitive dysfunction and dementia. Behavioural neurology 2015, 2015: 620143-620143. doi: https://doi.org/10.1155/2015/620143
Russo EB. Current Therapeutic Cannabis Controversies and Clinical Trial Design Issues. 2016, 7 (309). doi: https://doi.org/10.3389/fphar.2016.00309
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372: n71. doi: https://doi.org/10.1136/bmj.n71
Andreo-Martínez P, García-Martínez N, Sánchez-Samper EP, Martínez-González AE. An approach to gut microbiota profile in children with autism spectrum disorder. Environ Microbiol Rep 2019, 12 (2): 115-135. doi: https://doi.org/10.1111/1758-2229.12810
Martínez-González AE, Andreo-Martínez P. The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD. Medicina 2019, 55 (8): 408. doi: https://doi.org/10.3390/medicina55080408
Amr MM. Pesticide monitoring and its health problems in Egypt, a Third World country. Toxicol Lett 1999, 107 (1-3): 1-13. doi: https://doi.org/10.1016/s0378-4274(99)00026-0
M Khan K, Karnati J, Hamid I, Koceja D, Zahirul Islam M, Khan MA. Residential Proximity to Agricultural Fields and Neurological and Mental Health Outcomes in Rural Adults in Matlab, Bangladesh. International journal of environmental research and public health 2019, 16 (18): 3228. doi: https://doi.org/10.3390/ijerph16183228
Yalçın SS, Örün E, Yalçın S, Aykut O. Organochlorine pesticide residues in breast milk and maternal psychopathologies and infant growth from suburban area of Ankara, Turkey. Int J Environ Health Res 2015, 25 (4): 364-372. doi: https://doi.org/10.1080/09603123.2014.945515
Zhang J, Liu H, Li J, Lou L, Zhang S, Feng D, et al. Exposure to deltamethrin in adolescent mice induced thyroid dysfunction and behavioral disorders. Chemosphere 2020, 241: 125118. doi: https://doi.org/10.1016/j.chemosphere.2019.125118
Andreo-Martínez P, García-Martínez N, Sánchez-Samper EP, Martínez-González AE. An approach to gut microbiota profile in children with autism spectrum disorder. Environ Microbiol Rep 2020, 12 (2): 115-135. doi: https://doi.org/10.1111/1758-2229.12810
Souza RC, Portella RB, Almeida PVNB, Pinto CO, Gubert P, Santos da Silva JD, et al. Human milk contamination by nine organochlorine pesticide residues (OCPs). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes 2020, 55 (6): 530-538. doi: https://doi.org/10.1080/03601234.2020.1729630
Li ZM, Albrecht M, Fromme H, Schramm KW, De Angelis M. Persistent Organic Pollutants in Human Breast Milk and Associations with Maternal Thyroid Hormone Homeostasis. Environ Sci Technol 2020, 54 (2): 1111-1119. doi: https://doi.org/10.1021/acs.est.9b06054
Lenters V, Iszatt N, Forns J, Čechová E, Kočan A, Legler J, et al. Early-life exposure to persistent organic pollutants (OCPs, PBDEs, PCBs, PFASs) and attention-deficit/hyperactivity disorder: A multi-pollutant analysis of a Norwegian birth cohort. Environment International 2019, 125: 33-42. doi: https://doi.org/10.1016/j.envint.2019.01.020
Richardson JR, Taylor MM, Shalat SL, Guillot TS, 3rd, Caudle WM, Hossain MM, et al. Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. Faseb j 2015, 29 (5): 1960-1972. doi: https://doi.org/10.1096/fj.14-260901
Kumar A, Sasmal D, Sharma N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ Toxicol Pharmacol 2015, 39 (2): 504-514. doi: https://doi.org/10.1016/j.etap.2014.12.021
Fuhrimann S, Farnham A, Staudacher P, Atuhaire A, Manfioletti T, Niwagaba CB, et al. Exposure to multiple pesticides and neurobehavioral outcomes among smallholder farmers in Uganda. Environment International 2021, 152. doi: https://doi.org/10.1016/j.envint.2021.106477
Shrestha S, Parks CG, Umbach DM, Richards-Barber M, Hofmann JN, Chen H, et al. Pesticide use and incident Parkinson's disease in a cohort of farmers and their spouses. Environmental Research 2020, 191. doi: https://doi.org/10.1016/j.envres.2020.110186
Risch S, Janowsky DJNomd. Cholinergic-adrenergic balance in affective illness. 1984: 652-663.
Coronado GD, Holte S, Vigoren E, Griffith WC, Barr DB, Faustman E, et al. Organophosphate pesticide exposure and residential proximity to nearby fields: evidence for the drift pathway. J Occup Environ Med 2011, 53 (8): 884-891. doi: https://doi.org/10.1097/JOM.0b013e318222f03a
Descargas
Estadísticas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Nuria García-Martínez, Inmaculada Navarro-González, Pedro Andreo-Martínez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.