Revista de Discapacidad, Clínica y Neurociencias

Residuos de plaguicidas y el trastorno del espectro autista

Pedro Andreo-Martínez, Inmaculada Navarro-González, Nuria García-Martínez

DOI: https://doi.org/10.14198/DCN.19750

Resumen

El trastorno del espectro autista (TEA) engloba a un conjunto de trastornos del neurodesarrollo que se caracterizan por una interacción social deficiente, comunicación restringida y comportamientos repetitivos y estereotipados. La etiología del TEA es desconocida a día de hoy, por lo que diversos equipos de investigación multidisciplinares están realizando grandes esfuerzos para intentar dilucidar los factores y mecanismos que intervienen en su aparición. En este sentido, existe un creciente interés en el estudio de factores ambientales como la exposición a residuos de plaguicidas ya que se dispone de suficiente evidencia científica sobre los efectos neurotóxicos que éstos pueden provocar. Por lo tanto, pueden ser formuladas hipótesis de asociaciones específicas entre el TEA y los residuos de plaguicidas. Este trabajo realiza una revisión sistemática sobre la influencia de la exposición a residuos de plaguicidas y la aparición del TEA. La metodología para llevar a cabo este trabajo de revisión sistemática siguió las directrices marcadas por el método PRISMA, encontrándose un total de siete artículos elegibles para su discusión. Los residuos de plaguicidas estudiados por los artículos seleccionados fueron los organofosforados y sus metabolitos; los organoclorados, incluidos el endosulfán y los bifenilos policlorados junto a sus metabolitos; los carbamatos; los piretroides, incluida la cipermetrina; y el glufosinato de amonio. El estudio de la acción de estos plaguicidas se centró en el periodo prenatal, investigándose su exposición en madres gestantes que vivían en zonas próximas a campos de cultivo donde se aplican pesticidas, en modelos animales de ratón y en cultivos de células cerebrales. Se encontró que existe relación entre la exposición a plaguicidas en el periodo prenatal y el riesgo de aparición de TEA en la descendencia junto a una disbiosis en la microbiota intestinal en ratones. Por lo tanto, es importante evaluar el factor de riesgo de exposición a residuos de plaguicidas en la aparición del TEA con más datos, para lo cual se requieren más estudios tanto in vitro como in vivo con el fin de dilucidar los mecanismos bioquímicos precisos involucrados.

Palabras clave

Exposición prenatal; Neurotoxicidad; Residuos de plaguicidas; Revisión Sistemática; TEA

Texto completo:

PDF Estadísticas

Referencias

APA. American Psychiatric Association. Autism spectrum disorder. Diagnostic and Statistical Manual of Mental Disorders, 5 Eds (DSM-5). Washington, DC, USA: American Psychiatric Publishing; 2013.

Kanner L. Autistic disturbances of affective contact. Nervous child 1943, 2 (3): 217-250.

Asperger H. Die „Autistischen Psychopathen” im Kindesalter. European Archives of Psychiatry and Clinical Neuroscience 1944, 117 (1): 76-136.

Shattuck PT. The Contribution of Diagnostic Substitution to the Growing Administrative Prevalence of Autism in US Special Education. Pediatrics. 2006, 117 (4): 1028-1037. doi: https://doi.org/10.1542/peds.2005-1516

Andreo-Martínez P, García-Martínez N, Sánchez-Samper EP, Quesada-Medina J, MacFabe D. Metabolites of the gut microbiota involved in the autism spectrum disorder. Rev Dis Cli Neuro 2018, 5 (2): 39-48. doi: https://doi.org/10.14198/DCN.2018.5.2.05

Dong T, Guan Q, Hu W, Zhang M, Zhang Y, Chen M, et al. Prenatal exposure to glufosinate ammonium disturbs gut microbiome and induces behavioral abnormalities in mice. J Hazard Mater 2020, 389: 122152. doi: https://doi.org/10.1016/j.jhazmat.2020.122152

Wanke KA, Devanna P, Vernes SC. Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3′UTRome. Biological Psychiatry 2018, 83 (7): 548-557. doi: https://doi.org/10.1016/j.biopsych.2017.11.006

MacFabe DF. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Health Dis 2015, 26: 28177. doi: https://doi.org/10.3402/mehd.v26.28177

Argou-Cardozo I, Zeidán-Chuliá F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med Sci 2018, 6 (2): 29. doi: https://doi.org/10.3390/medsci6020029

Polleux F, Lauder JM. Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews 2004, 10 (4): 303-317. doi: https://doi.org/10.1002/mrdd.20044

Bell S, Maussion G, Jefri M, Peng H, Theroux J-F, Silveira H, et al. Disruption of GRIN2B Impairs Differentiation in Human Neurons. Stem Cell Reports 2018, 11 (1): 183-196. doi: https://doi.org/10.1016/j.stemcr.2018.05.018

Andreo-Martínez P, García-Martínez N, Sánchez-Samper EP, Martínez-González AE. An approach to gut microbiota profile in children with autism spectrum disorder. Environ Microbiol Rep 2019, 12 (2): 115-135. doi: https://doi.org/10.1111/1758-2229.12810

Andreo-Martínez P, Rubio M, Veas A, Sánchez-Meca J, Martínez-González AE. A meta-analysis on the gut microbiota in children with autism. In press. J Autism Dev Disord 2021.

Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. Developmental neurotoxic effects of two pesticides: Behavior and neuroprotein studies on endosulfan and cypermethrin. Toxicology 2015, 335: 1-10. doi: https://doi.org/10.1016/j.tox.2015.06.010

Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C. Maternal Residence Near Agricultural Pesticide Applications and Autism Spectrum Disorders among Children in the California Central Valley. Environ Health Perspect 2007, 115 (10): 1482-1489. doi: https://doi.org/10.1289/ehp.10168

Gilden RC, Huffling K, Sattler B. Pesticides and Health Risks. J Obstet Gynecol Neonatal Nurs 2010, 39 (1): 103-110. doi: https://doi.org/10.1111/j.1552-6909.2009.01092.x

Sabarwal A, Kumar K, Singh RP. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environ Toxicol Pharmacol 2018, 63: 103-114. doi: https://doi.org/10.1016/j.etap.2018.08.018

Regueiro J, López-Fernández O, Rial-Otero R, Cancho-Grande B, Simal-Gándara J. A review on the fermentation of foods and the residues of pesticides-biotransformation of pesticides and effects on fermentation and food quality. Crit Rev Food Sci Nutr 2015, 55 (6): 839-863. doi: https://doi.org/10.1080/10408398.2012.677872

Sánchez-Bayo F, Goka K. Impacts of Pesticides on Honey Bees. Beekeeping and Bee Conservation - Advances in Research. Chapter: 4: InTech Open Science; 2016. p. 77-97.

Frye CA, Bo E, Calamandrei G, Calzà L, Dessì-Fulgheri F, Fernández M, et al. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 2012, 24 (1): 144-159. doi: https://doi.org/10.1111/j.1365-2826.2011.02229.x

Jorsaraei SGA, Maliji G, Azadmehr A, Moghadamnia AA, Faraji AA. Immunotoxicity effects of carbaryl in vivo and in vitro. Environ Toxicol Pharmacol 2014, 38 (3): 838-844. doi: https://doi.org/10.1016/j.etap.2014.09.004

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021, 372: n71. doi: https://doi.org/10.1136/bmj.n71

Martínez-González AE, Andreo-Martínez P. The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD. Medicina 2019, 55 (8): 408. doi: https://doi.org/10.3390/medicina55080408

Sagiv SK, Harris MH, Gunier RB, Kogut KR, Harley KG, Deardorff J, et al. Prenatal Organophosphate Pesticide Exposure and Traits Related to Autism Spectrum Disorders in a Population Living in Proximity to Agriculture. Environ Health Perspect 2018, 126 (4): 047012. doi: https://doi.org/10.1289/EHP2580

Schmidt RJ, Kogan V, Shelton JF, Delwiche L, Hansen RL, Ozonoff S, et al. Combined Prenatal Pesticide Exposure and Folic Acid Intake in Relation to Autism Spectrum Disorder. Environ Health Perspect 2017, 125 (9): 097007. doi: https://doi.org/10.1289/EHP604

Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, et al. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study. Environ Health Perspect 2014, 122 (10): 1103-1109. doi: https://doi.org/10.1289/ehp.1307044

Kimura-Kuroda J, Nagata I, Kuroda Y. Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: A possible causal factor for developmental brain disorders? Chemosphere 2007, 67 (9): S412-S420. doi: https://doi.org/10.1016/j.chemosphere.2006.05.137

Ferreira Gonzalez I, Urrutia G, Alonso-Coello P. Systematic reviews and meta-analysis: scientific rationale and interpretation. Rev Esp Cardiol 2011, 64 (8): 688-696. doi: https://doi.org/10.1016/j.recesp.2011.03.029

Lee S, McLaughlin R, Harnly M, Gunier R, Kreutzer R. Community exposures to airborne agricultural pesticides in California: ranking of inhalation risks. Environ Health Perspect 2002, 110 (12): 1175-1184. doi: https://doi.org/10.1289/ehp.021101175

Loewenherz C, Fenske RA, Simcox NJ, Bellamy G, Kalman D. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ Health Perspect 1997, 105 (12): 1344-1353. doi: https://doi.org/10.1289/ehp.971051344

Cha YS, Kim H, Lee Y, Choi EH, Kim HI, Kim OH, et al. The relationship between serum ammonia level and neurologic complications in patients with acute glufosinate ammonium poisoning: A prospective observational study. Hum Exp Toxicol 2018, 37 (6): 571-579. doi: https://doi.org/10.1177/0960327117715902

Aris A, Leblanc S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod Toxicol 2011, 31 (4): 528-533. doi: https://doi.org/10.1016/j.reprotox.2011.02.004

Feat-Vetel J, Larrigaldie V, Meyer-Dilhet G, Herzine A, Mougin C, Laugeray A, et al. Multiple effects of the herbicide glufosinate-ammonium and its main metabolite on neural stem cells from the subventricular zone of newborn mice. Neurotoxicology 2018, 69: 152-163. doi: https://doi.org/10.1016/j.neuro.2018.10.001

EPA. Endosulfan phase-out. http://www.epa.gov/pesticides/reregistration/endosulfan/endosulfan-agreement.html

Silva MH, Gammon D. An assessment of the developmental, reproductive, and neurotoxicity of endosulfan. Birth Defects Res B: Dev Reprod Toxicol 2009, 86 (1): 1-28. doi: https://doi.org/10.1002/bdrb.20183

ATSDR. Toxicological profile for endosulfan. ATSDR. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=609&tid=113

Cohen BI. GABA-transaminase, the liver and infantile autism. Med Hypotheses 2001, 57 (6): 673-674. doi: https://doi.org/10.1054/mehy.2001.1350

Shafer TJ, Meyer DA, Crofton KM. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs. Environ Health Perspect 2005, 113 (2): 123-136. doi: https://doi.org/10.1289/ehp.7254

Rice DC. Behavioral Impairment Produced by Low-Level Postnatal PCB Exposure in Monkeys. Environ Res 1999, 80 (2): S113-S121. doi: https://doi.org/10.1006/enrs.1998.3917

Miyazaki W, Iwasaki T, Takeshita A, Kuroda Y, Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. The Journal of biological chemistry 2004, 279 (18): 18195-18202. doi: https://doi.org/10.1074/jbc.M310531200

Rietjens IMCM, den Besten C, Hanzlik RP, van Bladeren PJ. Cytochrome P450-Catalyzed Oxidation of Halobenzene Derivatives. Chem Res Toxicol 1997, 10 (6): 629-635. doi: https://doi.org/10.1021/tx9601061

Vidair CA. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human. Toxicol Appl Pharmacol 2004, 196 (2): 287-302. doi: https://doi.org/10.1016/j.taap.2003.12.016

Aluigi MG, Angelini C, Falugi C, Fossa R, Genever P, Gallus L, et al. Interaction between organophosphate compounds and cholinergic functions during development. Chem-Biol Interact 2005, 157-158: 305-316. doi: https://doi.org/10.1016/j.cbi.2005.10.037




DOI: https://doi.org/10.14198/DCN.19750

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2021 Pedro Andreo-Martínez, Inmaculada Navarro-González, Nuria García-Martínez

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.