Viviendo con dolor crónico: Un problema de neuroplasticidad.

Autores/as

DOI:

https://doi.org/10.14198/DCN.25156

Palabras clave:

dolor, crónico, neuroplasticidad, Ansiedad, Memoria

Resumen

Todos los seres humanos conocemos el dolor, este se presenta como una señal de protección ante estímulos nocivos. Sin embargo, en algunas ocasiones, continua de una manera crónica, más allá de los 3 meses. Aun no tenemos clara la causa de esta cronificación, sin embargo, cualquier falla en el sistema de respuesta puede llevar a una perseverancia del dolor. En un sistema errático cualquier estimulo puede provocar dolor (alodinia) o la sensibilidad a estímulos dolorosos puede ser exagerada (hiperalgesia). Las investigaciones nos han brindado conocimiento de cambios adaptativos y desadaptativos como potenciales activados a largo plazo, aumentos de señalización, apoptosis celulares, cambios en la expresión génica, aumento de sensibilidad en los nociceptores, cicatrización glial, cambios de homeostasis en la microglía y astrocitos. Así como los sitios anatómicos involucrados y modificados por el dolor crónico y comorbilidades como ansiedad o dificultad de aprendizaje, como son el núcleo accumbens, núcleo dorso medial, hipotálamo, núcleo parabraquial, corteza cingulada anterior, corteza somatosensorial primaria, tabique medial, hipocampo y núcleo de la estría terminal. Esta revisión puntualizo en la información más reciente respecto a neuroplasticidad y dolor crónico, con el objetivo de facilitar el enfoque multi y transdisciplinario.

Citas

Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open. 2016 Jun 20;6(6):e010364. doi: https://doi.org/10.1136/bmjopen-2015-010364

Yong RJ, Mullins PM, Bhattacharyya N. Prevalence of chronic pain among adults in the United States. Pain. 2022 Feb 1;163(2):e328-e332. doi: https://doi.org/10.1097/j.pain.0000000000002291

Instituto Nacional de Salud Pública (INSP), “Encuesta Nacional de Salud y Nutrición 2012”, 2012. Disponible en: http://ensanut.insp.mx/informes.php#.VEaHccnzg6k

Organización Mundial de la Salud (OMS) 2019/2021. Clasificación Internacional de Enfermedades, undécima revisión (CIE-11), https://icd.who.int/browse11.

Raja, Srinivasa N.a,*; Carr, Daniel B.b; Cohen, Miltonc; Finnerup, Nanna B.d,e; Flor, Hertaf; Gibson, Stepheng; Keefe, Francis J.h; Mogil, Jeffrey S.i; Ringkamp, Matthiasj; Sluka, Kathleen A.k; Song, Xue-Junl; Stevens, Bonniem; Sullivan, Mark D.n; Tutelman, Perri R.o; Ushida, Takahirop; Vader, Kyleq. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. PAIN 161(9):p 1976-1982, September 2020. doi: https://doi.org/10.1097/j.pain.0000000000001939

Blanco Naranjo, E. G., Chavarría Campos, G. F., & Garita Fallas, Y. M. (2021). Manejo multimodal del dolor crónico. Revista Medica Sinergia, 6(4), e625. doi: https://doi.org/10.31434/rms.v6i4.625

Adriana Paola Lara Álvarez, María Alejandra Ardila Carreño, Israel Guerrero Fajardo, Sandra Pamela Ortiz Colmenares, Mayra Lisette Caicedo Angulo, & Héctor Adán Pezo López. (2021) Manejo del dolor crónico desde la perspectiva del anestesiólogo. doi: https://doi.org/10.5281/zenodo.5558743

Gulur P, Nelli A. Persistent postoperative pain: mechanisms and modulators. Curr Opin Anaesthesiol. 2019 Oct;32(5):668-673. doi: https://doi.org/10.1097/ACO.0000000000000770.

Tao ZY, Wang PX, Wei SQ, Traub RJ, Li JF, Cao DY. The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System. Neural Plast. 2019 Dec 17;2019:1389296. doi: https://doi.org/10.1155/2019/1389296. PMID: 31933624; PMCID: PMC6942873.

Kourosh Arami M, Komaki A. Reciprocal interaction of pain and brain: Plasticity-induced pain, pain-induced plasticity, and therapeutic targets. CNS Neurol Disord Drug Targets. 2022 Nov 2. doi: https://doi.org/10.2174/1871527322666221102141002

Ji RR, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci. 2019 Nov;20(11):667-685. doi: https://doi.org/10.1038/s41583-019-0218-1.

Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010 Nov;16(11):1248-57. doi: https://doi.org/10.1038/nm.2235.

Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32. doi: https://doi.org/10.1146/annurev.neuro.051508.135531

Jessri M, Sultan AS, Tavares T, Schug S. Central mechanisms of pain in orofacial pain patients: Implications for management. J Oral Pathol Med. 2020 Jul;49(6):476-483. doi: https://doi.org/10.1111/jop.13062

Pedrajas Navas, José Mª., & Molino González, Ángel M.. (2008). Bases neuromédicas del dolor. Clínica y Salud, 19(3), 277-293. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1130-52742008000300002&lng=es&tlng=es

Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci. 2018 Jun 7;12:158. doi: https://doi.org/10.3389/fncel.2018.00158

Ghosh K, Pan HL. Epigenetic Mechanisms of Neural Plasticity in Chronic Neuropathic Pain. ACS Chem Neurosci. 2022 Feb 16;13(4):432-441. doi: https://doi.org/10.1021/acschemneuro.1c00841

Morgalla MH, Zhang Y, de Barros Filho MF, Lepski G, Chander BS. Laser-evoked potentials recover gradually when using dorsal root ganglion stimulation, and this influences nociceptive pathways in neuropathic pain patients. Pain Pract. 2022 Mar;22(3):372-380. doi: https://doi.org/10.1111/papr.13094

Warwick CA, Keyes AL, Woodruff TM, Usachev YM. The complement cascade in the regulation of neuroinflammation, nociceptive sensitization, and pain. J Biol Chem. 2021 Sep;297(3):101085. doi: https://doi.org/10.1016/j.jbc.2021.101085

Cha M, Lee KH, Lee BH. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020 Jan 22;10(1):943. doi: https://doi.org/10.1038/s41598-020-57797-y

Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007 Nov;10(11):1369-76. doi: https://doi.org/10.1038/nn2003

Alexandre C, Latremoliere A, Ferreira A, Miracca G, Yamamoto M, Scammell TE, Woolf CJ. Decreased alertness due to sleep loss increases pain sensitivity in mice. Nat Med. 2017 Jun;23(6):768-774. doi: https://doi.org/10.1038/nm.4329

Karu K, Swanwick RS, Novejarque-Gadea A, Antunes-Martins A, Thomas B, Yoshimi E, Foster W, Fang M, McMahon SB, Bennett DLH, Rice ASC, Okuse K. Quantitative Proteomic Analysis of the Central Amygdala in Neuropathic Pain Model Rats. J Proteome Res. 2020 Apr 3;19(4):1592-1619. doi: https://doi.org/10.1021/acs.jproteome.9b00805

Li J, Remington JM, Liao C, Parsons RL, Schneebeli S, Braas KM, May V, Brewer M. GPCR Intracellular Loop Regulation of Beta-Arrestin-Mediated Endosomal Signaling Dynamics. J Mol Neurosci. 2022 Jun;72(6):1358-1373. doi: https://doi.org/10.1007/s12031-022-02016-8

Bak MS, Park H, Kim SK. Neural Plasticity in the Brain during Neuropathic Pain. Biomedicines. 2021 May 31;9(6):624. doi: https://doi.org/10.3390/biomedicines9060624

Pati D, Kash TL. Tumor necrosis factor-α modulates GABAergic and dopaminergic neurons in the ventrolateral periaqueductal gray of female mice. J Neurophysiol. 2021 Dec 1;126(6):2119-2129. doi: https://doi.org/10.1152/jn.00251.2021

Boccella S, Cristiano C, Romano R, Iannotta M, Belardo C, Farina A, Guida F, Piscitelli F, Palazzo E, Mazzitelli M, Imperatore R, Tunisi L, de Novellis V, Cristino L, Di Marzo V, Calignano A, Maione S, Luongo L. Ultra-micronized palmitoylethanolamide rescues the cognitive decline-associated loss of neural plasticity in the neuropathic mouse entorhinal cortex-dentate gyrus pathway. Neurobiol Dis. 2019 Jan;121:106-119. doi: https://doi.org/10.1016/j.nbd.2018.09.023

Chen T, Wang J, Wang YQ, Chu YX. Current Understanding of the Neural Circuitry in the Comorbidity of Chronic Pain and Anxiety. Neural Plast. 2022 Feb 15;2022:4217593. doi: https://doi.org/10.1155/2022/4217593

Cho C, Michailidis V, Martin LJ. Revealing brain mechanisms of mTOR-mediated translational regulation: Implications for chronic pain. Neurobiol Pain. 2018 Mar 21;4:27-34. doi: https://doi.org/10.1016/j.ynpai.2018.03.002

Hazra S, Handa G, Nayak P, Sahu S, Sarkar K, Venkataraman S. A Dysfunctional Descending Pain Modulation System in Chronic Nonspecific Low Back Pain: A Systematic Review and ALE Meta-Analysis. Neurol India. 2022 Jul-Aug;70(4):1344-1360. doi: https://doi.org/10.4103/0028-3886.355137

Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, Bao S, Wang F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain. 2019 Jan-Dec;15:1744806919847366. doi: https://doi.org/10.1177/1744806919847366

McCarberg B, Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. Pain Med. 2019 Dec 1;20(12):2421-2437. doi: https://doi.org/10.1093/pm/pnz017

Paras ML, Murad MH, Chen LP, Goranson EN, Sattler AL, Colbenson KM, Elamin MB, Seime RJ, Prokop LJ, Zirakzadeh A. Sexual abuse and lifetime diagnosis of somatic disorders: a systematic review and meta-analysis. JAMA. 2009 Aug 5;302(5):550-61. doi: https://doi.org/10.1001/jama.2009.1091

Li XH, Matsuura T, Xue M, Chen QY, Liu RH, Lu JS, Shi W, Fan K, Zhou Z, Miao Z, Yang J, Wei S, Wei F, Chen T, Zhuo M. Oxytocin in the anterior cingulate cortex attenuates neuropathic pain and emotional anxiety by inhibiting presynaptic long-term potentiation. Cell Rep. 2021 Jul 20;36(3):109411. doi: https://doi.org/10.1016/j.celrep.2021.109411

Zhuo M. Cortical plasticity as synaptic mechanism for chronic pain. J Neural Transm (Vienna). 2020 Apr;127(4):567-573. doi: https://doi.org/10.1007/s00702-019-02071-3

Wang B, Chen MX, Chen SC, Feng XJ, Liao YH, Zhao YX, Tie JS, Liu Y, Ao LJ. Low-Intensity Focused Ultrasound Alleviates Chronic Neuropathic Pain-Induced Allodynia by Inhibiting Neuroplasticity in the Anterior Cingulate Cortex. Neural Plast. 2022 Jul 23;2022:6472475. doi: https://doi.org/10.1155/2022/6472475

Iwabuchi SJ, Xing Y, Cottam WJ, Drabek MM, Tadjibaev A, Fernandes GS, Petersen KK, Arendt-Nielsen L, Graven-Nielsen T, Valdes AM, Zhang W, Doherty M, Walsh D, Auer DP. Brain perfusion patterns are altered in chronic knee pain: a spatial covariance analysis of arterial spin labelling MRI. Pain. 2020 Jun;161(6):1255-1263. doi: https://doi.org/10.1097/j.pain.0000000000001829

Rahal L, Thibaut M, Rivals I, Claron J, Lenkei Z, Sitt JD, Tanter M, Pezet S. Ultrafast ultrasound imaging pattern analysis reveals distinctive dynamic brain states and potent sub-network alterations in arthritic animals. Sci Rep. 2020 Jun 26;10(1):10485. doi: https://doi.org/10.1038/s41598-020-66967-x

Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron. 2019 Nov 20;104(4):637-653. doi: 10.1016/j.neuron.2019.09.018

McCarberg B, Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. Pain Med. 2019 Dec 1;20(12):2421-2437. doi: https://doi.org/10.1093/pm/pnz017. PMID: 30865778.

Liu TH, Wang Z, Xie F, Liu YQ, Lin Q. Contributions of aversive environmental stress to migraine chronification: Research update of migraine pathophysiology. World J Clin Cases. 2021 Mar 26;9(9):2136-2145. doi: https://doi.org/10.12998/wjcc.v9.i9.2136

Karafin MS, Chen G, Wandersee NJ, Brandow AM, Hurley RW, Simpson P, Ward D, Li SJ, Field JJ. Chronic pain in adults with sickle cell disease is associated with alterations in functional connectivity of the brain. PLoS One. 2019 May 20;14(5):e0216994. doi: https://doi.org/10.1371/journal.pone.0216994

Zhou YS, Meng FC, Cui Y, Xiong YL, Li XY, Meng FB, Niu ZX, Zheng JX, Quan YQ, Wu SX, Han Y, Xu H. Regular Aerobic Exercise Attenuates Pain and Anxiety in Mice by Restoring Serotonin-Modulated Synaptic Plasticity in the Anterior Cingulate Cortex. Med Sci Sports Exerc. 2022 Apr 1;54(4):566-581. doi: https://doi.org/10.1249/MSS.0000000000002841

Pacheco-Barrios K, Cardenas-Rojas A, Thibaut A, Costa B, Ferreira I, Caumo W, Fregni F. Methods and strategies of tDCS for the treatment of pain: current status and future directions. Expert Rev Med Devices. 2020 Sep;17(9):879-898. doi: https://doi.org/10.1080/17434440.2020.1816168

Hall FS, Li A, Li B. Neural Plasticity in Mood Disorders. Neural Plast. 2018 May 9;2018:3745251. doi: https://doi.org/10.1155/2018/3745251

Ma L, Yue L, Zhang Y, Wang Y, Han B, Cui S, Liu FY, Wan Y, Yi M. Spontaneous Pain Disrupts Ventral Hippocampal CA1-Infralimbic Cortex Connectivity and Modulates Pain Progression in Rats with Peripheral Inflammation. Cell Rep. 2019 Nov 5;29(6):1579-1593.e6. doi: https://doi.org/10.1016/j.celrep.2019.10.002

Descargas

Estadísticas

Estadísticas en RUA

Publicado

19-09-2023

Cómo citar

1.
Casillas Jardon DD. Viviendo con dolor crónico: Un problema de neuroplasticidad. . RevDisCliNeuro [Internet]. 19 de septiembre de 2023 [citado 3 de mayo de 2024];:1-12. Disponible en: https://revistes.ua.es/dcn/article/view/25156

Número

Sección

Artículos de revisión